
INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 1

Proof of identity-based Multiple Cloud Storage Distributed Data

Processing
Ms. S.Guru Pallavi Mr.N.Maneiah

Abstract— Remote data integrity checking

is of crucial importance in cloud storage. It

can make the clients verify whether their

outsourced data is kept intact without

downloading the whole data. In some

application scenarios, the clients have to

store their data on multi-cloud servers. At

the same time, the integrity checking

protocol must be efficient in order to save

the verifier’s cost. From the two points, we

propose a novel remote data integrity

checking model: ID-DPDP (identity-based

distributed provable data possession) in

multi-cloud storage. The formal system

model and security model are given. Based

on the bilinear pairings, a concrete ID-

DPDP protocol is designed. The proposed

ID-DPDP protocol is provably secure under

the hardness assumption of the standard

CDH (computational DiffieHellman)

problem. In addition to the structural

advantage of elimination of certificate

management, our ID-DPDP protocol is also

efficient and flexible. Based on the client’s

authorization, the proposed ID-DPDP

protocol can realize private verification,

delegated verification and public

verification.

1 INTRODUCTION

Over the last years, cloud computing has

become an important theme in the computer

field. Essentially, it takes the information

processing as a service, such as storage,

computing. It relieves of the burden for

storage management, universal data access

with independent geographical locations. At

the same time, it avoids of capital

expenditure on hardware, software, and

personnel maintenances, etc. Thus, cloud

computing attracts more intention from the

enterprise. The foundations of cloud

computing lie in the outsourcing of

computing tasks to the third party. It entails

the security risks in terms of confidentiality,

integrity and availability of data and service.

 2

The issue to convince the cloud clients that

their data are kept intact is especially vital

since the clients do not store these data

locally. Remote data integrity checking is a

primitive to address this issue. For the

general case, when the client stores his data

on multi-cloud servers, the distributed

storage and integrity checking are

indispensable. On the other hand, the

integrity checking protocol must be efficient

in order to make it suitable for capacity-

limited end devices. Thus, based on

distributed computation, we will study

distributed remote data integrity checking

model and present the corresponding

concrete protocol in multi-cloud storage.

1.1Motivation

 We consider an ocean information service

corporation Cor in the cloud computing

environment. Cor can provide the following

services: ocean measurement data, ocean

environment monitoring data, hydrological

data, marine biological data, GIS

information, etc. Besides of the above

services, Cor has also some private

information and some public information,

such as the corporation’s advertisement. Cor

will store these different ocean data on

multiple cloud servers. Different cloud

service providers have different reputation

and charging standard. Of course, these

cloud service providers need different

charges according to the different security-

levels. Usually, more secure and more

expensive. Thus, Cor will select different

cloud service providers to store its different

data. For some sensitive ocean data, it will

copy these data many times and store these

copies on different cloud servers. For the

private data, it will store them on the private

cloud server. For the public advertisement

data, it will store them on the cheap public

cloud server. At last, Cor stores its whole

data on the different cloud servers according

to their importance and sensitivity. Of

course, the storage selection will take

account into the Cor’s profits and losses.

Thus, the distributed cloud storage is

indispensable. In multi-cloud environment,

distributed provable data possession is an

important element to secure the remote data.

In PKI (public key infrastructure), provable

data possession protocol needs public key

certificate distribution and management. It

will incur considerable overheads since the

verifier will check the certificate when it

checks the remote data integrity. In addition

to the heavy certificate verification, the

system also suffers from the other

 3

complicated certificates management such as

certificates generation, delivery, revocation,

renewals, etc. In cloud computing, most

verifiers only have low computation

capacity. Identity-based public key

cryptography can eliminate the complicated

certificate management. In order to increase

the efficiency, identity-based provable data

possession is more attractive. Thus, it will

be very meaningful to study the ID-DPDP.

1.2 Related work

In cloud computing, remote data integrity

checking is an important security problem.

The clients’ massive data is outside his

control. The malicious cloud server may

corrupt the clients’ data in order to gain

more benefits. Many researchers proposed

the corresponding system model and

security model. In 2007, provable data

possession (PDP) paradigm was proposed

by Ateniese et al.]. In the PDP model, the

verifier can check remote data integrity with

a high probability. Based on the RSA, they

designed two provably secure PDP schemes.

After that, Ateniese et al. proposed dynamic

PDP model and concrete although it does

not support insert operation. In order to

support the insert operation, in 2009, Erway

et al. proposed a full-dynamic PDP scheme

based on the authenticated flip table The

similar work has also been done by F. Sebe´

et al.. PDP allows a verifier to verify the

remote data integrity without retrieving or

downloading the whole data. It is a

probabilistic proof of possession by

sampling random set of blocks from the

server, which drastically reduces I/O costs.

The verifier only maintains small metadata

to perform the integrity checking. PDP is an

interesting remote data integrity checking

model. In 2012, Wang proposed the security

model and concrete scheme of proxy PDP in

public clouds At the same time, Zhu et al.

proposed the cooperative PDP in the multi-

cloud storage Following Ateniese et al.’s

pioneering work, many remote data integrity

checking models and protocols have been

proposed In 2008, Shacham presented the

first proof of retrievability (POR) scheme

with provable security

Fig. 1. The System Model of ID-DPDP

 4

II. SYSTEM MODEL AND SECURITY

MODEL OF ID-DPDP

 The ID-DPDP system model and security

definition are presented in this section. An

ID-DPDP protocol comprises four different

entities which are illustrated in Figure 1. We

describe them below: 1) Client: an entity,

which has massive data to be stored on the

multi-cloud for maintenance and

computation, can be either individual

consumer or corporation. 2) CS (Cloud

Server): an entity, which is managed by

cloud service provider, has significant

storage space and computation resource to

maintain the clients’ data.

3) Combiner: an entity, which receives the

storage request and distributes the block-tag

pairs to the corresponding cloud servers.

When receiving the challenge, it splits the

challenge and distributes them to the

different cloud servers. When receiving the

responses from the cloud servers, it

combines them and sends the combined

response to the verifier. 4) PKG (Private

Key Generator): an entity, when receiving

the identity, it outputs the corresponding

private key. First, we give the definition of

interactive proof system. It will be used in

the definition of ID-DPDP. Then, we present

the definition and security model of ID-

DPDP protocol. Definition 1 (Interactive

Proof System): [22] Let c,s : N → R be

functions satisfying c(n) > s(n) + 1 p(n) for

some polynomial p(·). An interactive pair

(P,V) is called a interactive proof system

for the language L, with completeness

bound c(·) and soundness bound s(·), if 1)

Completeness: for every x ∈ L, Pr[< P,V >

(x) = 1] ≥ c(|x|). 2) Soundness: for every x

6∈ L and every interactive machine B, Pr[<

B,V > (x) = 1] ≤ s(|x|). Interactive proof

system is used in the definition of IDDPDP,

i.e., Definition 2. Definition 2 (ID-DPDP):

An ID-DPDP protocol is a collection of

three algorithms (Setup, Extract, TagGen)

and an interactive proof system (Proof).

4) Proof(P,C(Combiner),V (V erifier)): is a

protocol among P, C and V . At the end of

the interactive protocol, V outputs a bit

{0|1} denoting false or true. Besides of the

high efficiency based on the communication

and computation overheads, a practical ID-

DPDP protocol must satisfy the following

security requirements:

1) The verifier can perform the ID-DPDP

protocol without the local copy of the file(s)

to be checked.

 5

2) If some challenged block-tag pairs are

modified or lost, the response can not pass

the ID-DPDP protocol even if P and C

collude. To capture the above security

requirements, we define the security of an

ID-DPDP protocol as follows.

C. Performance analysis

First, we analyze the performance of our

proposed ID-DPDP protocol from the

computation and communication overhead.

We compare our ID-DPDP protocol with the

other up-todate PDP protocols. On the other

hand, our protocol does not suffer from

resource-consuming certificate management

which is require by the other existing

protocols. Second, we analyze our proposed

ID-DPDP protocol’s properties of flexibility

and verification. Third, we give the

prototypal implementation of the proposed

ID-DPDP protocol. Computation: Suppose

there are n message blocks which will be

stored in ˆ n cloud servers. The block’s

sector number is s. The challenged block

number is c. We will consider the

computation overhead in the different

phases. On the group G1, bilinear pairings,

exponentiation, multiplication, and the hash

function h1 (the input may be large data,

such as, 1G byte) contribute most

computation cost. Compared with them, the

hash function h, the operations on Zq and

G2 are faster, the hash function H can be

done once for all. Thus, we do not consider

the hash functions h and H, the operations

on Zq and G2. On the client, the

computation cost mainly comes from the

procedures of TagGen and V erification

(i.e., the phase 5 in the protocol Proof(P, C,

V)). In the phase TagGen, the client

III. SECURITY ANALYSIS

 The security of our ID-DPDP protocol

mainly consists of the correctness and

unforgeability. The property of correctness

has been shown in the subsection III-B. On

the other hand, we study the universal

unforgeability. It means that the attacker

includes all the cloud servers P and the

combiner C. If our ID-DPDP protocol is

universally unforgeable, it can also prevent

the collusion of malicious cloud servers P

and C. Our proof comprises two parts: single

block-tag pair is universally unforgeable; the

response is universally unforgeable.

Definition 7: A forger A

(t,ǫ,QH,Qh,Qh1,QE,QT)breaks a single tag

scheme if it runs in time at most t; A makes

at most QH queries to the hash function H,

at most Qh queries to the hash function h, at

 6

most Qh1 queries to the hash function h1, at

most QE queries to the extraction oracle

Extract, at most QT queries to the tag oracle

TagGen; and the probability that A forges a

valid block-tag pair is as least ǫ. A single tag

scheme is

(t,ǫ,QH,Qh,Qh1,QE,QT)existentially

unforgeable under an adaptive chosen-

message attack if no forger

(t,ǫ,QH,Qh,Qh1,QE,QT)-breaks it. The

following Lemma 1 shows that the single

tag scheme is secure. Lemma 1: Let (G1,G2)

be a (t′,ǫ′)-GDH group pair of order q. Then

the tag scheme on (G1,G2) is

(t,ǫ,QH,Qh,Qh1,QE,QT)-secure against

existential forgery under an adaptive

chosen-block attack (in the random oracle

model) for all t and ǫ satisfying ǫ′ ≥ 1 9 and

t′ ≤

23(QH+Qh)(t+O(QH)+O(QE)+O(Qh)+O(Q

h1)+O(QT)) µδ(1−µ)QE (1−δ)QT ǫ , where

0 < µ,δ < 1. Based on the difficulty of the

CDH problem, our single tag scheme is

secure. Proof: Let the stored index-block

pair set be {(1,F1), (2,F2), ···, (n,Fn)}. For 1

≤ i ≤ n, each block Fi is split into s sectors,

i.e., Fi = { ˜ Fi1, ˜ Fi2,··· , ˜ Fis}. Then, the

hash function h1 is used on these sectors,

i.e., Fij = h1(˜ Fij). Then, we get the hash

value set {Fij}. Let the selected identity set

be I = {ID1,ID2,··· ,ID˜ n}. We show how

to construct a t′algorithm B that solves CDH

problem on G1 with probability at least ǫ′.

This will contradict the fact that (G1,G2) are

GDH group pair. Algorithm B is given

(g,ga,gb) ∈ G3 1. Its goal is to output gab ∈

G1. Algorithm B simulates the challenger

and interacts with forger A as follows.

Setup. Algorithm B starts by setting the

master public key as Y = ga while a keeps

unknown. It initializes the three tables Tab1,

Tab2 and Tab3. Then, it picks the two

parameters µ and δ from the interval (0,1).

H-Oracle. At any time algorithm A can

query the random oracle H. To respond to

these queries, algorithm B maintains a list of

tuples (IDj,Rj,Hj) as explained below. We

refer to this list as Tab1. When A queries the

oracle H at the pair (IDj,Rj), algorithm B

responds as follows: 1) If (IDj,Rj,∗) ∈ Tab1,

then algorithm B retrieves the tuple

(IDj,Rj,Hj) and responds with Hj, i.e.,

H(IDj,Rj) = Hj. 2) Otherwise, B picks a

random Hj ∈ Zq. Then, it adds the tuple

(IDj,Rj,Hj) to Tab1 and responds to A by

setting H(IDj,Rj) = Hj. Extract-Oracle. At

any time algorithm A can query the oracle

Extract. To respond to these queries,

algorithm B maintains a list of tuples

 7

(ci,IDi,Ri,Hi,σi) as explained below. We

refer to this list as Tab2. When A queries the

oracle Extract at the identity IDi ∈ I,

algorithm B picks a bit ci ∈ {0,1} according

to the bivariate distribution function: Pr[ci =

0] = µ, Pr[ci = 1] = 1−µ. Based on ci, B

responds as follows: 1) If ci = 1, B

independently picks the random σi,Hi ∈ Zq

and calculates Ri = gσi · Y −Hi. a) If

(IDi,Ri,∗) 6∈ Tab1, then algorithm B adds

the tuple (IDi,Ri,Hi) to Tab1 and the tuple

(ci,IDi,Ri,Hi,σi) to Tab2. b) If (IDi,Ri,∗) ∈

Tab1, then algorithm B picks the other

random σi,Hi ∈ Zq and calculates Ri = gσi ·

Y −Hi until (IDi,Ri,∗) 6∈ Tab1. Then,

algorithm B adds the tuple (IDi,Ri,Hi) to

Tab1 and the tuple (ci,IDi,Ri,Hi,σi) to Tab2.

c) Finally, algorithm B responds with

(Ri,σi). 2) If ci = 0, algorithm B

independently picks a random Ri ∈ G1 and

calculates Hi = H(IDi,Ri) which satisfies

(IDi,Ri,∗) 6∈Tab1 (otherwise, picks another

Ri and calculates H(IDi,Ri)). Then, B adds

the tuple (IDi,Ri,Hi) to Tab1 and the tuple

(ci,IDi,Ri,Hi,σi) to Tab2, where σi = ⊥. B

fails. h-Oracle. At any time algorithm A can

query the random oracle h. To respond to

these queries, algorithm B maintains a list of

tuples (Ni,CSli,i,zi,bi,di) as explained

below. We refer to this list as Tab3. When A

queries the oracle h at the tuple (Ni,CSli,i),

B responds as follows: 1) If

(Ni,CSli,i,zi,bi,di) ∈ Tab3 and 1 ≤ i ≤ n, then

algorithm B responds with zi Qs j=1 u−Fij j

, i.e., h(Ni,CSli,i) = zi Qs j=1 u−Fij j . 2)

Otherwise, algorithm B picks a random bi ∈

Z∗ q and a random coin di ∈ {0,1}

according to the bivariate distribution Pr[di

= 0] = δ, Pr[di = 1] = 1 − δ. a) If di = 1,

algorithm B calculates zi = gbi. If di = 0,

algorithm B calculates zi = (gb)bi. b)

Algorithm B adds the tuple

(Ni,CSli,i,zi,bi,di) to Tab3 and responds

with zi Qs j=1 u−Fij j , i.e., h(Ni,CSli,i) = zi

Qs j=1 u−Fij j .

This completes the description of algorithm

B. It remains to show that B solves the given

instance of the CDH problem with a high

probability. Breaking CDH: Based on the

oracle-replay technique [32], B can get

another block-tag pair (Fw, ˆ Tw) on the

same block Fw by using different hash

functions ˆ h and ˆ H. Then, we can get e(ˆ

Tw,g) = e(ˆ h(Nw,CSlw,w)Qs j=1 uh1(Fwj)

j ,RY H(ID,R)). According to the

simulation, B knows the corresponding bw,ˆ

bw that satisfy

Probability analysis. To evaluate the success

probability for algorithm B, we analyze the

 8

four events needed for B to succeed: E1: B

does not abort as a result of any of A’s

Extract queries.

. Algorithm B’s running time is the same as

A’s running time plus the time which is

taken to respond to QH H queries, Qh h

queries, Qh1 h1 queries, QE Extract queries

and QT tag queries. Hence, the total running

time is at most ˆ t ≤ t + O(QH) + O(QE) +

O(Qh) + O(Qh1) + O(QT). By taking use of

the oracle replay technique [32], A can get

two different tags on the same block and

randomness with the probability ǫ′ ≥ 1 9

within the time t′ ≤ 23(QH + Qh)ˆ tˆ ǫ−1,

i.e., t′ ≤

23(QH+Qh)(t+O(QH)+O(QE)+O(Qh)+O(Q

h1)+O(QT)) µδ(1−µ)QE (1−δ)QT ǫ . After

obtaining the two different tags on the same

block and randomness, algorithm B can

break the CDH problem. It contradicts the

assumption that (G1,G2) is a GDH group

pair. This completes the proof. Lemma 1

states that the untrusted CS has no ability to

forge the single tag. But, can the untrusted

CS forge the aggregated block-tag pair to

cheat the verifier ? First, when all the stored

block-tag pairs are challenged, we study

whether the untrusted CS can aggregate the

fake block-tag pairs to cheat the verifier. It

corresponds to Lemma 2. Second, when

some stored blocktag pairs are not

challenged, we study whether the untrusted

CS can substitute the valid unchallenged

block-tag pairs for the modified block-tag

pairs to cheat the verifier. It corresponds to

Lemma 3. Lemma 2: If all the stored block-

tag pairs are challenged and some block-tag

pairs are modified, the malicious CS

aggregates the fake block-tag pairs which

are different from the challenged block-tag

pairs. The combined block-tag pair (ˆ F,T)

(i.e., response) only can pass the verification

with negligible probability. Proof: We can

use proof by contradiction to prove Lemma

2. For the challenge chal = (c,k1,k2), the

following parameters can be calculated

Since the single tag is existentially

unforgeable (Lemma 1), there exist at least

two different indices i such that xi 6= yi.

Suppose there exist ¯ s ≤ c index pairs

(xi,yi) with the property xi 6= yi. Then,

there exist q¯ s−1 tuples (a1,a2,··· ,ac)

which satisfy the above equation (3). Since

(a1,a2,··· ,ac) is a random vector, the

equation (3) holds only with the probability

less than q¯ s−1/qc ≤ qc−1/qc = q−1. It is

negligible. Thus, if some fake block-tag

pairs are aggregated, the combined blocktag

 9

pair (ˆF,T) only can pass the verification

with negligible probability. When some

modified block-tag pairs are challenged and

some valid block-tag pairs are unchallenged,

the malicious CS still can not cheat the

verifier. Lemma 3: If some challenged

block-tag pairs are modified, the malicious

CS substitutes the other valid block-tag pairs

(which are not challenged) for the modified

block-tag pairs (which are challenged). The

combined block-tag pair (ˆF,T) (i.e.,

response) only can pass the verification with

negligible probability. Proof: Define the

modified block-tag pair index set as M and

the valid block-tag index set as ¯ M. Let the

verifier’s challenge be chal = (c,k1,k2) and S

= {πk1(1),··· ,πk1(c)}. For the CS set P,

suppose some challenged block-tag pairs

{(Fl,Tl),l ∈ S1 ⊆ S} are modified, i.e. S1 =

STM 6= Φ. Φ denotes the empty set. The

corresponding CSs (whose modified block-

tag pairs are challenged) substitute the other

valid block-tag pairs {(Fˆ l,Tˆ l),ˆ l ∈ S2 ⊆ ¯

M} (which are not challenged) for {(Fl,Tl),l

∈ S1} where |S1| = |S2|. By making use of

the forged θi = (ˆ F(i),T(i)), the combined

response θ = (ˆF,T) only can pass

verification with negligible probability. If

the challenged block-tag pairs (Fl,Tl),l ∈ S1

are modified, P substitutes the other valid

block-tag pairs (Fˆ l,Tˆ l) for them. For 1 ≤ i

≤ c, the following parameters are calculated

ai = fk2(i), vi = πk1(i), hi = h(Nvi,CSlvi ,vi)

.

IV. CONCLUSION

In multi-cloud storage, this paper formalizes

the ID-DPDP system model and security

model. At the same time, we propose the

first ID-DPDP protocol which is provably

secure under the assumption that the CDH

problem is hard. Besides of the elimination

of certificate management, our ID-DPDP

protocol has also flexibility and high

efficiency. At the same time, the proposed

ID-DPDP protocol can realize private

verification, delegated verification and

public verification based on the client’s

authorization.

REFERENCES

[1] G. Ateniese, R. Burns, R. Curtmola, J.

Herring, L. Kissner, Z. Peterson, D. Song,

“Provable Data Possession at Untrusted

Stores”, CCS’07, pp. 598-609, 2007.

 [2] G. Ateniese, R. DiPietro, L. V. Mancini,

G. Tsudik, “Scalable and Efficient Provable

Data Possession”, SecureComm 2008, 2008.

 10

[3] C. C. Erway, A. Kupcu, C.

Papamanthou, R. Tamassia, “Dynamic

Provable Data Possession”, CCS’09, pp.

213-222, 2009.

 [4] F. Sebe´, J. Domingo-Ferrer, A.

Mart´ınez-Balleste´, Y. Deswarte, J.

Quisquater, “Efficient Remote Data Integrity

checking in Critical Information

Infrastructures”, IEEE Transactions on

Knowledge and Data Engineering, 20(8), pp.

1-6, 2008.

[5] H.Q. Wang, “Proxy Provable Data

Possession in Public Clouds,” IEEE

Transactions on Services Computing, 2012.

http://doi.ieeecomputersociety.org/10.1109/

TSC.2012.35

 [6] Y. Zhu, H. Hu, G.J. Ahn, M. Yu,

“Cooperative Provable Data Possession for

Integrity Verification in Multicloud

Storage”, IEEE Transactions on Parallel and

Distributed Systems, 23(12), pp. 2231-2244,

2012.

[7] Y. Zhu, H. Wang, Z. Hu, G. J. Ahn, H.

Hu, S. S. Yau, “Efficient Provable Data

Possession for Hybrid Clouds”, CCS’10, pp.

756-758, 2010.

 [8] R. Curtmola, O. Khan, R. Burns, G.

Ateniese, “MR-PDP: MultipleReplica

Provable Data Possession”, ICDCS’08, pp.

411-420, 2008.

[9] A. F. Barsoum, M. A. Hasan, “Provable

Possession and Replication of Data over

Cloud Servers”, CACR, University of

Waterloo, Report2010/32,2010. Available at

http://www.cacr.math.uwaterloo.ca/techrepo

rts /2010/cacr2010-32.pdf.

[10] Z. Hao, N. Yu, “A Multiple-Replica

Remote Data Possession Checking Protocol

with Public Verifiability”, 2010 Second

International Symposium on Data, Privacy,

and E-Commerce, pp. 84-89, 2010.

 [11] A. F. Barsoum, M. A. Hasan, “On

Verifying Dynamic Multiple Data Copies

over Cloud Servers”, IACR eprint report

447, 2011. Available at

http://eprint.iacr.org/2011/447.pdf.

 [12] A. Juels, B. S. Kaliski Jr., “PORs:

Proofs of Retrievability for Large Files”,

CCS’07, pp. 584-597, 2007.

[13] H. Shacham, B. Waters, “Compact

Proofs of Retrievability”, ASIACRYPT

2008, LNCS 5350, pp. 90-107, 2008.

http://doi.ieeecomputersociety.org/10.1109/TSC.2012.35
http://doi.ieeecomputersociety.org/10.1109/TSC.2012.35
http://www.cacr.math.uwaterloo.ca/techreports%20/2010/cacr2010-32.pdf
http://www.cacr.math.uwaterloo.ca/techreports%20/2010/cacr2010-32.pdf
http://eprint.iacr.org/2011/447.pdf

 11

[14] K. D. Bowers, A. Juels, A. Oprea,

“Proofs of Retrievability: Theory and

Implementation”, CCSW’09, pp. 43-54,

2009.

[15] Q. Zheng, S. Xu. Fair and Dynamic

Proofs of Retrievability. CODASPY’11, pp.

237-248, 2011. [16] Y. Dodis, S. Vadhan, D.

Wichs, “Proofs of Retrievability via

Hardness Amplification”, TCC 2009, LNCS

5444, pp. 109-127, 2009.

 [17] Y. Zhu, H. Wang, Z. Hu, G. J. Ahn, H.

Hu, “Zero-Knowledge Proofs of

Retrievability”, Sci China Inf Sci, 54(8), pp.

1608-1617, 2011.

[18] C. Wang, Q. Wang, K. Ren, and W.

Lou, “Privacy-Preserving Public Auditing

for Data Storage Security in Cloud

Computing”, INFOCOM 2010, IEEE,

March 2010.

Mr.N.Maneiah received M.Tech(CSE)

Degree from School of Information

Technology, Autonomous, and

Affiliated to JNTUA, Anathapur. He

is currently working as Assistant Professor in

the Department of Computer Science and

Engineering in Modugula Kalavathamma

Institute of Technology for Women,

Rajampet, Kadapa,AP. His interests includes

Object Oriented Programming, Operating

System, Database Management System,

Computer Networking, Cloud Computing and

Software Quality Assurance.

Ms. S.Guru Pallavi. She is

currently pursuing M.tech Degree

in Computer Science and

Engineering specialization in Modugula

Kalavathamma Institute of Technology for

Women, Rajampet, Kadapa,AP

