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Abstract— Remote data integrity checking 

is of crucial importance in cloud storage. It 

can make the clients verify whether their 

outsourced data is kept intact without 

downloading the whole data. In some 

application scenarios, the clients have to 

store their data on multi-cloud servers. At 

the same time, the integrity checking 

protocol must be efficient in order to save 

the verifier’s cost. From the two points, we 

propose a novel remote data integrity 

checking model: ID-DPDP (identity-based 

distributed provable data possession) in 

multi-cloud storage. The formal system 

model and security model are given. Based 

on the bilinear pairings, a concrete ID-

DPDP protocol is designed. The proposed 

ID-DPDP protocol is provably secure under 

the hardness assumption of the standard 

CDH (computational DiffieHellman) 

problem. In addition to the structural 

advantage of elimination of certificate 

management, our ID-DPDP protocol is also 

efficient and flexible. Based on the client’s 

authorization, the proposed ID-DPDP 

protocol can realize private verification, 

delegated verification and public 

verification. 

1 INTRODUCTION  

Over the last years, cloud computing has 

become an important theme in the computer 

field. Essentially, it takes the information 

processing as a service, such as storage, 

computing. It relieves of the burden for 

storage management, universal data access 

with independent geographical locations. At 

the same time, it avoids of capital 

expenditure on hardware, software, and 

personnel maintenances, etc. Thus, cloud 

computing attracts more intention from the 

enterprise. The foundations of cloud 

computing lie in the outsourcing of 

computing tasks to the third party. It entails 

the security risks in terms of confidentiality, 

integrity and availability of data and service. 
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The issue to convince the cloud clients that 

their data are kept intact is especially vital 

since the clients do not store these data 

locally. Remote data integrity checking is a 

primitive to address this issue. For the 

general case, when the client stores his data 

on multi-cloud servers, the distributed 

storage and integrity checking are 

indispensable. On the other hand, the 

integrity checking protocol must be efficient 

in order to make it suitable for capacity-

limited end devices. Thus, based on 

distributed computation, we will study 

distributed remote data integrity checking 

model and present the corresponding 

concrete protocol in multi-cloud storage. 

1.1Motivation 

 We consider an ocean information service 

corporation Cor in the cloud computing 

environment. Cor can provide the following 

services: ocean measurement data, ocean 

environment monitoring data, hydrological 

data, marine biological data, GIS 

information, etc. Besides of the above 

services, Cor has also some private 

information and some public information, 

such as the corporation’s advertisement. Cor 

will store these different ocean data on 

multiple cloud servers. Different cloud 

service providers have different reputation 

and charging standard. Of course, these 

cloud service providers need different 

charges according to the different security-

levels. Usually, more secure and more 

expensive. Thus, Cor will select different 

cloud service providers to store its different 

data. For some sensitive ocean data, it will 

copy these data many times and store these 

copies on different cloud servers. For the 

private data, it will store them on the private 

cloud server. For the public advertisement 

data, it will store them on the cheap public 

cloud server. At last, Cor stores its whole 

data on the different cloud servers according 

to their importance and sensitivity. Of 

course, the storage selection will take 

account into the Cor’s profits and losses. 

Thus, the distributed cloud storage is 

indispensable. In multi-cloud environment, 

distributed provable data possession is an 

important element to secure the remote data. 

In PKI (public key infrastructure), provable 

data possession protocol needs public key 

certificate distribution and management. It 

will incur considerable overheads since the 

verifier will check the certificate when it 

checks the remote data integrity. In addition 

to the heavy certificate verification, the 

system also suffers from the other 
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complicated certificates management such as 

certificates generation, delivery, revocation, 

renewals, etc. In cloud computing, most 

verifiers only have low computation 

capacity. Identity-based public key 

cryptography can eliminate the complicated 

certificate management. In order to increase 

the efficiency, identity-based provable data 

possession is more attractive. Thus, it will 

be very meaningful to study the ID-DPDP. 

1.2 Related work 

In cloud computing, remote data integrity 

checking is an important security problem. 

The clients’ massive data is outside his 

control. The malicious cloud server may 

corrupt the clients’ data in order to gain 

more benefits. Many researchers proposed 

the corresponding system model and 

security model. In 2007, provable data 

possession (PDP) paradigm was proposed 

by Ateniese et al.]. In the PDP model, the 

verifier can check remote data integrity with 

a high probability. Based on the RSA, they 

designed two provably secure PDP schemes. 

After that, Ateniese et al. proposed dynamic 

PDP model and concrete although it does 

not support insert operation. In order to 

support the insert operation, in 2009, Erway 

et al. proposed a full-dynamic PDP scheme 

based on the authenticated flip table The 

similar work has also been done by F. Sebe´ 

et al.. PDP allows a verifier to verify the 

remote data integrity without retrieving or 

downloading the whole data. It is a 

probabilistic proof of possession by 

sampling random set of blocks from the 

server, which drastically reduces I/O costs. 

The verifier only maintains small metadata 

to perform the integrity checking. PDP is an 

interesting remote data integrity checking 

model. In 2012, Wang proposed the security 

model and concrete scheme of proxy PDP in 

public clouds At the same time, Zhu et al. 

proposed the cooperative PDP in the multi-

cloud storage Following Ateniese et al.’s 

pioneering work, many remote data integrity 

checking models and protocols have been 

proposed  In 2008, Shacham presented the 

first proof of retrievability (POR) scheme 

with provable security 

 

Fig. 1. The System Model of ID-DPDP 
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II. SYSTEM MODEL AND SECURITY 

MODEL OF ID-DPDP 

 The ID-DPDP system model and security 

definition are presented in this section. An 

ID-DPDP protocol comprises four different 

entities which are illustrated in Figure 1. We 

describe them below: 1) Client: an entity, 

which has massive data to be stored on the 

multi-cloud for maintenance and 

computation, can be either individual 

consumer or corporation. 2) CS (Cloud 

Server): an entity, which is managed by 

cloud service provider, has significant 

storage space and computation resource to 

maintain the clients’ data. 

3) Combiner: an entity, which receives the 

storage request and distributes the block-tag 

pairs to the corresponding cloud servers. 

When receiving the challenge, it splits the 

challenge and distributes them to the 

different cloud servers. When receiving the 

responses from the cloud servers, it 

combines them and sends the combined 

response to the verifier. 4) PKG (Private 

Key Generator): an entity, when receiving 

the identity, it outputs the corresponding 

private key. First, we give the definition of 

interactive proof system. It will be used in 

the definition of ID-DPDP. Then, we present 

the definition and security model of ID-

DPDP protocol. Definition 1 (Interactive 

Proof System): [22] Let c,s : N → R be 

functions satisfying c(n) > s(n) + 1 p(n) for 

some polynomial p(·). An interactive pair 

(P,V ) is called a interactive proof system 

for the language L, with completeness 

bound c(·) and soundness bound s(·), if 1) 

Completeness: for every x ∈ L, Pr[< P,V > 

(x) = 1] ≥ c(|x|). 2) Soundness: for every x 

6∈ L and every interactive machine B, Pr[< 

B,V > (x) = 1] ≤ s(|x|). Interactive proof 

system is used in the definition of IDDPDP, 

i.e., Definition 2. Definition 2 (ID-DPDP): 

An ID-DPDP protocol is a collection of 

three algorithms (Setup, Extract, TagGen) 

and an interactive proof system (Proof).  

4) Proof(P,C(Combiner),V (V erifier)): is a 

protocol among P, C and V . At the end of 

the interactive protocol, V outputs a bit 

{0|1} denoting false or true. Besides of the 

high efficiency based on the communication 

and computation overheads, a practical ID-

DPDP protocol must satisfy the following 

security requirements:  

1) The verifier can perform the ID-DPDP 

protocol without the local copy of the file(s) 

to be checked.  
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2) If some challenged block-tag pairs are 

modified or lost, the response can not pass 

the ID-DPDP protocol even if P and C 

collude. To capture the above security 

requirements, we define the security of an 

ID-DPDP protocol as follows.  

C. Performance analysis 

First, we analyze the performance of our 

proposed ID-DPDP protocol from the 

computation and communication overhead. 

We compare our ID-DPDP protocol with the 

other up-todate PDP protocols. On the other 

hand, our protocol does not suffer from 

resource-consuming certificate management 

which is require by the other existing 

protocols. Second, we analyze our proposed 

ID-DPDP protocol’s properties of flexibility 

and verification. Third, we give the 

prototypal implementation of the proposed 

ID-DPDP protocol. Computation: Suppose 

there are n message blocks which will be 

stored in ˆ n cloud servers. The block’s 

sector number is s. The challenged block 

number is c. We will consider the 

computation overhead in the different 

phases. On the group G1, bilinear pairings, 

exponentiation, multiplication, and the hash 

function h1 (the input may be large data, 

such as, 1G byte) contribute most 

computation cost. Compared with them, the 

hash function h, the operations on Zq and 

G2 are faster, the hash function H can be 

done once for all. Thus, we do not consider 

the hash functions h and H, the operations 

on Zq and G2. On the client, the 

computation cost mainly comes from the 

procedures of TagGen and V erification 

(i.e., the phase 5 in the protocol Proof(P, C, 

V)). In the phase TagGen, the client 

III. SECURITY ANALYSIS 

 The security of our ID-DPDP protocol 

mainly consists of the correctness and 

unforgeability. The property of correctness 

has been shown in the subsection III-B. On 

the other hand, we study the universal 

unforgeability. It means that the attacker 

includes all the cloud servers P and the 

combiner C. If our ID-DPDP protocol is 

universally unforgeable, it can also prevent 

the collusion of malicious cloud servers P 

and C. Our proof comprises two parts: single 

block-tag pair is universally unforgeable; the 

response is universally unforgeable. 

Definition 7: A forger A 

(t,ǫ,QH,Qh,Qh1,QE,QT)breaks a single tag 

scheme if it runs in time at most t; A makes 

at most QH queries to the hash function H, 

at most Qh queries to the hash function h, at 
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most Qh1 queries to the hash function h1, at 

most QE queries to the extraction oracle 

Extract, at most QT queries to the tag oracle 

TagGen; and the probability that A forges a 

valid block-tag pair is as least ǫ. A single tag 

scheme is 

(t,ǫ,QH,Qh,Qh1,QE,QT)existentially 

unforgeable under an adaptive chosen-

message attack if no forger 

(t,ǫ,QH,Qh,Qh1,QE,QT)-breaks it. The 

following Lemma 1 shows that the single 

tag scheme is secure. Lemma 1: Let (G1,G2) 

be a (t′,ǫ′)-GDH group pair of order q. Then 

the tag scheme on (G1,G2) is 

(t,ǫ,QH,Qh,Qh1,QE,QT)-secure against 

existential forgery under an adaptive 

chosen-block attack (in the random oracle 

model) for all t and ǫ satisfying ǫ′ ≥ 1 9 and 

t′ ≤ 

23(QH+Qh)(t+O(QH)+O(QE)+O(Qh)+O(Q

h1)+O(QT )) µδ(1−µ)QE (1−δ)QT ǫ , where 

0 < µ,δ < 1. Based on the difficulty of the 

CDH problem, our single tag scheme is 

secure. Proof: Let the stored index-block 

pair set be {(1,F1), (2,F2), ···, (n,Fn)}. For 1 

≤ i ≤ n, each block Fi is split into s sectors, 

i.e., Fi = { ˜ Fi1, ˜ Fi2,··· , ˜ Fis}. Then, the 

hash function h1 is used on these sectors, 

i.e., Fij = h1( ˜ Fij). Then, we get the hash 

value set {Fij}. Let the selected identity set 

be I = {ID1,ID2,··· ,ID˜ n}. We show how 

to construct a t′algorithm B that solves CDH 

problem on G1 with probability at least ǫ′. 

This will contradict the fact that (G1,G2) are 

GDH group pair. Algorithm B is given 

(g,ga,gb) ∈ G3 1. Its goal is to output gab ∈ 

G1. Algorithm B simulates the challenger 

and interacts with forger A as follows. 

Setup. Algorithm B starts by setting the 

master public key as Y = ga while a keeps 

unknown. It initializes the three tables Tab1, 

Tab2 and Tab3. Then, it picks the two 

parameters µ and δ from the interval (0,1). 

H-Oracle. At any time algorithm A can 

query the random oracle H. To respond to 

these queries, algorithm B maintains a list of 

tuples (IDj,Rj,Hj) as explained below. We 

refer to this list as Tab1. When A queries the 

oracle H at the pair (IDj,Rj), algorithm B 

responds as follows: 1) If (IDj,Rj,∗) ∈ Tab1, 

then algorithm B retrieves the tuple 

(IDj,Rj,Hj) and responds with Hj, i.e., 

H(IDj,Rj) = Hj. 2) Otherwise, B picks a 

random Hj ∈ Zq. Then, it adds the tuple 

(IDj,Rj,Hj) to Tab1 and responds to A by 

setting H(IDj,Rj) = Hj. Extract-Oracle. At 

any time algorithm A can query the oracle 

Extract. To respond to these queries, 

algorithm B maintains a list of tuples 
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(ci,IDi,Ri,Hi,σi) as explained below. We 

refer to this list as Tab2. When A queries the 

oracle Extract at the identity IDi ∈ I, 

algorithm B picks a bit ci ∈ {0,1} according 

to the bivariate distribution function: Pr[ci = 

0] = µ, Pr[ci = 1] = 1−µ. Based on ci, B 

responds as follows: 1) If ci = 1, B 

independently picks the random σi,Hi ∈ Zq 

and calculates Ri = gσi · Y −Hi. a) If 

(IDi,Ri,∗) 6∈ Tab1, then algorithm B adds 

the tuple (IDi,Ri,Hi) to Tab1 and the tuple 

(ci,IDi,Ri,Hi,σi) to Tab2. b) If (IDi,Ri,∗) ∈ 

Tab1, then algorithm B picks the other 

random σi,Hi ∈ Zq and calculates Ri = gσi · 

Y −Hi until (IDi,Ri,∗) 6∈ Tab1. Then, 

algorithm B adds the tuple (IDi,Ri,Hi) to 

Tab1 and the tuple (ci,IDi,Ri,Hi,σi) to Tab2. 

c) Finally, algorithm B responds with 

(Ri,σi). 2) If ci = 0, algorithm B 

independently picks a random Ri ∈ G1 and 

calculates Hi = H(IDi,Ri) which satisfies 

(IDi,Ri,∗) 6∈Tab1 (otherwise, picks another 

Ri and calculates H(IDi,Ri)). Then, B adds 

the tuple (IDi,Ri,Hi) to Tab1 and the tuple 

(ci,IDi,Ri,Hi,σi) to Tab2, where σi = ⊥. B 

fails. h-Oracle. At any time algorithm A can 

query the random oracle h. To respond to 

these queries, algorithm B maintains a list of 

tuples (Ni,CSli,i,zi,bi,di) as explained 

below. We refer to this list as Tab3. When A 

queries the oracle h at the tuple (Ni,CSli,i), 

B responds as follows: 1) If 

(Ni,CSli,i,zi,bi,di) ∈ Tab3 and 1 ≤ i ≤ n, then 

algorithm B responds with zi Qs j=1 u−Fij j 

, i.e., h(Ni,CSli,i) = zi Qs j=1 u−Fij j . 2) 

Otherwise, algorithm B picks a random bi ∈ 

Z∗ q and a random coin di ∈ {0,1} 

according to the bivariate distribution Pr[di 

= 0] = δ, Pr[di = 1] = 1 − δ. a) If di = 1, 

algorithm B calculates zi = gbi. If di = 0, 

algorithm B calculates zi = (gb)bi. b) 

Algorithm B adds the tuple 

(Ni,CSli,i,zi,bi,di) to Tab3 and responds 

with zi Qs j=1 u−Fij j , i.e., h(Ni,CSli,i) = zi 

Qs j=1 u−Fij j . 

This completes the description of algorithm 

B. It remains to show that B solves the given 

instance of the CDH problem with a high 

probability. Breaking CDH: Based on the 

oracle-replay technique [32], B can get 

another block-tag pair (Fw, ˆ Tw) on the 

same block Fw by using different hash 

functions ˆ h and ˆ H. Then, we can get e(ˆ 

Tw,g) = e(ˆ h(Nw,CSlw,w)Qs j=1 uh1(Fwj) 

j ,RY H(ID,R)). According to the 

simulation, B knows the corresponding bw,ˆ 

bw that satisfy 

Probability analysis. To evaluate the success 

probability for algorithm B, we analyze the 
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four events needed for B to succeed: E1: B 

does not abort as a result of any of A’s 

Extract queries. 

. Algorithm B’s running time is the same as 

A’s running time plus the time which is 

taken to respond to QH H queries, Qh h 

queries, Qh1 h1 queries, QE Extract queries 

and QT tag queries. Hence, the total running 

time is at most ˆ t ≤ t + O(QH) + O(QE) + 

O(Qh) + O(Qh1) + O(QT ). By taking use of 

the oracle replay technique [32], A can get 

two different tags on the same block and 

randomness with the probability ǫ′ ≥ 1 9 

within the time t′ ≤ 23(QH + Qh)ˆ tˆ ǫ−1, 

i.e., t′ ≤ 

23(QH+Qh)(t+O(QH)+O(QE)+O(Qh)+O(Q

h1)+O(QT )) µδ(1−µ)QE (1−δ)QT ǫ . After 

obtaining the two different tags on the same 

block and randomness, algorithm B can 

break the CDH problem. It contradicts the 

assumption that (G1,G2) is a GDH group 

pair. This completes the proof. Lemma 1 

states that the untrusted CS has no ability to 

forge the single tag. But, can the untrusted 

CS forge the aggregated block-tag pair to 

cheat the verifier ? First, when all the stored 

block-tag pairs are challenged, we study 

whether the untrusted CS can aggregate the 

fake block-tag pairs to cheat the verifier. It 

corresponds to Lemma 2. Second, when 

some stored blocktag pairs are not 

challenged, we study whether the untrusted 

CS can substitute the valid unchallenged 

block-tag pairs for the modified block-tag 

pairs to cheat the verifier. It corresponds to 

Lemma 3. Lemma 2: If all the stored block-

tag pairs are challenged and some block-tag 

pairs are modified, the malicious CS 

aggregates the fake block-tag pairs which 

are different from the challenged block-tag 

pairs. The combined block-tag pair ( ˆ F,T) 

(i.e., response) only can pass the verification 

with negligible probability. Proof: We can 

use proof by contradiction to prove Lemma 

2. For the challenge chal = (c,k1,k2), the 

following parameters can be calculated 

Since the single tag is existentially 

unforgeable (Lemma 1), there exist at least 

two different indices i such that xi 6= yi. 

Suppose there exist ¯ s ≤ c index pairs 

(xi,yi) with the property xi 6= yi. Then, 

there exist q¯ s−1 tuples (a1,a2,··· ,ac) 

which satisfy the above equation (3). Since 

(a1,a2,··· ,ac) is a random vector, the 

equation (3) holds only with the probability 

less than q¯ s−1/qc ≤ qc−1/qc = q−1. It is 

negligible. Thus, if some fake block-tag 

pairs are aggregated, the combined blocktag 
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pair ( ˆF,T) only can pass the verification 

with negligible probability. When some 

modified block-tag pairs are challenged and 

some valid block-tag pairs are unchallenged, 

the malicious CS still can not cheat the 

verifier. Lemma 3: If some challenged 

block-tag pairs are modified, the malicious 

CS substitutes the other valid block-tag pairs 

(which are not challenged) for the modified 

block-tag pairs (which are challenged). The 

combined block-tag pair ( ˆF,T) (i.e., 

response) only can pass the verification with 

negligible probability. Proof: Define the 

modified block-tag pair index set as M and 

the valid block-tag index set as ¯ M. Let the 

verifier’s challenge be chal = (c,k1,k2) and S 

= {πk1(1),··· ,πk1(c)}. For the CS set P, 

suppose some challenged block-tag pairs 

{(Fl,Tl),l ∈ S1 ⊆ S} are modified, i.e. S1 = 

STM 6= Φ. Φ denotes the empty set. The 

corresponding CSs (whose modified block-

tag pairs are challenged) substitute the other 

valid block-tag pairs {(Fˆ l,Tˆ l),ˆ l ∈ S2 ⊆ ¯ 

M} (which are not challenged) for {(Fl,Tl),l 

∈ S1} where |S1| = |S2|. By making use of 

the forged θi = ( ˆ F(i),T(i)), the combined 

response θ = ( ˆF,T) only can pass 

verification with negligible probability. If 

the challenged block-tag pairs (Fl,Tl),l ∈ S1 

are modified, P substitutes the other valid 

block-tag pairs (Fˆ l,Tˆ l) for them. For 1 ≤ i 

≤ c, the following parameters are calculated 

ai = fk2(i), vi = πk1(i), hi = h(Nvi,CSlvi ,vi) 

. 

IV. CONCLUSION 

In multi-cloud storage, this paper formalizes 

the ID-DPDP system model and security 

model. At the same time, we propose the 

first ID-DPDP protocol which is provably 

secure under the assumption that the CDH 

problem is hard. Besides of the elimination 

of certificate management, our ID-DPDP 

protocol has also flexibility and high 

efficiency. At the same time, the proposed 

ID-DPDP protocol can realize private 

verification, delegated verification and 

public verification based on the client’s 

authorization. 
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